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The symmetry point-group statistics for all combinatorially non-isomorphic

11-hedra (440564 in total) are contributed in the paper for the ®rst time. The

most symmetrical shapes with 3 to 36 automorphism group orders (305 in total)

are drawn in Schlegel projection and characterized by facet symbols and

symmetry point groups.

1. Introduction

The automorphism group orders for 11-hedra with 8 to 13 and 18

vertices were found by Duijvestijn & Federico (1981). Among them,

only those with automorphism group orders 1 and 3 can be a priori

identi®ed as related to 1 and 3 symmetry point groups. The numbers

of 11-hedra in each Euler's genera (i.e. classes of 11-hedra with the

same number of vertices) were given by Engel (1982, 1994). The

symmetry point groups for all combinatorially non-isomorphic 4- to

10-hedra and simple (only three edges meet at each vertex) 11- to

13-hedra as well as Schlegel diagrams and facet symbols for the most

symmetrical shapes (usually those with automorphism group orders

not less than 3) were contributed in our previous papers (Voyte-

khovsky, 2001a; Voytekhovsky & Stepenshchikov, 2002a,b). Here, we

report the symmetry point groups for all non-simple 11-hedra for the

®rst time. For the sake of completeness, the symmetry statistics for the

simple 11-hedra are also included in Fig. 1. All the 11-hedra with

automorphism group orders not less than 3 are drawn in Schlegel

projections and characterized by the facet symbols and symmetry

point groups.

2. Generation and characterization of polyhedra

As in previous cases, we generated the polyhedra as their Schlegel

projections. This is justi®ed by two theorems: every 3-connected

planar graph can be realized as a 3-polyhedron and every combina-

torial automorphism of a 3-polyhedron is af®nely realizable. That is,

there exists to each Schlegel diagram a 3-space realization of a

polyhedron such that its edge graph is isomorphic to the Schlegel

diagram while its symmetry point group is isomorphic to the auto-

morphism group of the Schlegel diagram.

The diagrams were generated by the Fedorov (1893) recurrence

algorithm brie¯y described by Engel (1994) and Voytekhovsky

(2001b). As the simple 11-hedra were already found, we used them to

generate non-simple polyhedra by the reduction operation w. It is

known to reduce any edge joining vertices v1 and v2 if all facets

containing v1 but not v2 have no common vertex with any facet

containing v2 but not v1. Applying w in all possible ways, we reduced

the number of vertices from 18 to 8. The generated shapes were

compared and duplicated variants were eliminated. Afterwards, the

combinatorially non-isomorphic polyhedra were characterized by the

symmetry point groups and facet symbols. The latter shows the

numbers of triangular, quadrilateral, pentagonal etc. facets in a

sequence at a polyhedron.

3. Results and discussion

The automorphism group order and symmetry point-group statistics

of 11-hedra with various numbers of vertices are given in Fig. 1. The

most symmetrical shapes with automorphism group orders not less

than 3 are drawn in Schlegel diagrams in Fig. 2. Unfortunately, in

many cases the symmetry point groups of the appropriate polyhedra

cannot easily be seen from these diagrams. For example, if a reali-

zation of a polyhedron has a facet orthogonal to the main axis then its

optimal projection is just onto this facet. Some optimal projections

are given in Fig. 3. We work with a computer program to make any

diagram so that the symmetry of a polyhedron can immediately be

seen.

The facet symbols of the polyhedra are lexicographically ordered

below (in brackets) for all Euler's genera. Most of these types of

11-hedra have a realization with mm2 symmetry point group except

those for which another one is given in parentheses.

V = 8: [10, 1] 1±4.

V = 9: [10, 001] 5±7, 8 (3m), [83] 9 (3), 10, 11, 12 (3m), 13 (�6m2).

V = 10: [10, 00001] 14, [65] 15±23, [812] 24, 25, [8201] 26.

V = 11: [10, 0000001] 27 (10mm), [47] 28±34, [551] 35±36 (5m),

[632] 37±39, [6401] 40±44, [8021] 45, 46.

V = 12: [29] 47±49, 50±51 (�6m2), [452] 52±57, [4601] 58 (3), 59±61,

62±63 (3m), [533] 64 (3), 65±68 (3m), [614] 69±71, [6221] 72, 73, [6302]

74, 75, 76 (32), [640001] 77±80, [7031] 81 (3), 82±83 (3m), [7300001] 84

(3m), [8003] 85 (3), 86, 87 (�6m2), [82000001] 88.

V = 13: [0, 11] 89, 90, [272] 91±94, [2801] 95, 96, [434] 97±100, [4421]

101±104, [4502] 105, [460001] 106, 107, [6041] 108, [6122] 109, 110,

[622001] 111, [64000001] 112±114.

Figure 1
Automorphism group orders (a.g.o.) and symmetry point groups (s.p.g.) of
11-hedra.
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Figure 2
The most symmetrical 11-hedra. See text for facet symbols and symmetries.



V = 14: [0, 10, 01] 115, [092] 116, [254] 117±122, [2621] 123±126,

[2702] 127±131, [280001] 132, 133, [416] 134±136, [4241] 137±142,

[4322] 143±146, [4403] 147, 148 [442001] 149, 150, [46000001] 151,

[604001] 152±155, [6104] 156, [61202] 157, [620201] 158.

V = 15: [0, 10, 0001] 159, [074] 160, [0821] 161, 162, [1631] 163±164

(3m), [236] 165, 166 (3m), 167 (�6m2), [2441] 168±171, [2522] 172±175,

[2603] 176 (3m), [262001] 177, [28000001] 178, [3332] 179 (3),

[3601001] 180 (3m), [4061] 181, 182 (3m), [424001] 183±185, [4304]

186 (3), 187±188 (3m), [43202] 189±191, [4330001] 192 (3), [44200001]

193, [5033] 194 (3), 195±196 (3m), [53003] 197 (3m), [6005] 198 (�6m2),

[60212] 199, [60400001] 200, [70013] 201 (3), 202 (3m), [7003001] 203

(3m).

V = 16: [056] 204 (5m), [0641] 205, 206, [0722] 207±209, [0803] 210,

[082001] 211, [218] 212±214, [2261] 215±218, [2342] 219, 220 [2423]

221, 222 [244001] 223±225, [2504] 226, 227, [25202] 228, 229, [260201]

230, [41402] 231, [4205] 232±236, [42212] 237, [43022] 238, [432002]

239, 240, [44020001] 241, [50500001] 242 (5m), [60032] 243, [600401]

244, [602102] 245.

V = 17: [0461] 246, [064001] 247, 248, [07202] 249, 250, [2081] 251,

[2162] 252, 253, [226001] 254, [2324] 255, 256, [2405] 257±259, [24212]

260, [25022] 261, [252002] 262, [2700002] 263, [40600001] 264, [41222]

265, [420401] 266, [600221] 267.

V = 18: [0281] 268, [0362] 269, [0443] 270, [0524] 271, [05402] 272,

[0605] 273 (�6m2), [06212] 274, [062201] 275, 276, [07022] 277, [072002]

278, 279, [0900002] 280 (18m2), [1334] 281 (3m), [2063] 282, 283

(�6m2), [208001] 284, [2144] 285, [21602] 286, [2225] 287, 288, [224201]

289, [2306] 290, 291 (�6m2), [24032] 292, [242102] 293, [250202] 294,

295, [27000002] 296, [3061001] 297 (3m), [40313] 298 (3m), [41042]

299, [412202] 300, [420221] 301, [4300301] 302 (3), [430103] 303 (3m),

[50033] 304 (3m), [600203] 305 (�6m2).

The automorphism group order statistics for 11-hedra with 8 to 13

and 18 vertices agree with the data by Duijvestijn & Federico (1981).

Such data for 11-hedra of 14 to 17 vertices and the facet symbols as

well as symmetry point-group statistics for all 11-hedra are contrib-

uted here for the ®rst time. As in the cases of 4- to 10-hedra and

simple 12-, 13-hedra (Voytekhovsky, 2001a, Voytekhovsky &

Stepenshchikov, 2002a,b), the shapes of 1, m, 2 and mm2 symmetry

point groups prevail among the 11-hedra. The trivial shapes (of 1

symmetry point group) form the overwhelming majority. The number

of polyhedra rapidly drops with increasing symmetry.

4. Conclusions

Up to now, all the varieties of 4- to 11-hedra and simple 12-, 13-hedra

have been enumerated and characterized by the facet symbols and

symmetry point groups. The most symmetrical shapes of this huge

diversity are drawn in Schlegel projections. The next steps are to

generate and characterize in the same way all non-simple 12- and

simple 14-hedra. However, two intriguing problems still remain

almost uninvestigated: how to classify the overwhelming majority of

trivial polyhedra and whether some general relations between the

combinatorial types (or facet symbols) and symmetry point groups

(or automorphism groups) exist or not?

We acknowledge a great bene®t from the highly skilled comments

made by the referee.
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Figure 2 (continued)
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Figure 3
The Schlegel projections of some 11-hedra onto the facet orthogonal to the main
symmetry axis. The numbers relate to Fig. 2.


